Copied to
clipboard

G = C427D14order 448 = 26·7

7th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C427D14, C14.932+ 1+4, C4⋊C454D14, (C4×D28)⋊5C2, D2826(C2×C4), (C2×D28)⋊18C4, (C4×C28)⋊4C22, C42⋊C26D7, D28⋊C411C2, D14⋊C460C22, (C2×C14).65C24, C14.17(C23×C4), C4⋊Dic782C22, D14.4(C22×C4), C2.1(D48D14), C28.120(C22×C4), (C2×C28).583C23, C22⋊C4.125D14, C72(C22.11C24), (C4×Dic7)⋊10C22, (C22×D28).17C2, (C22×C4).188D14, C22.27(C23×D7), (C2×D28).255C22, (C23×D7).35C22, C23.153(C22×D7), C23.D7.94C22, C23.21D1424C2, (C22×C14).135C23, (C22×C28).225C22, (C2×Dic7).195C23, (C22×D7).162C23, (C2×C4)⋊6(C4×D7), C4.58(C2×C4×D7), (C2×C28)⋊11(C2×C4), (C2×C4×D7)⋊43C22, C22.27(C2×C4×D7), C2.19(D7×C22×C4), (C7×C4⋊C4)⋊51C22, (D7×C22⋊C4)⋊25C2, (C22×D7)⋊7(C2×C4), (C7×C42⋊C2)⋊7C2, (C2×C14).21(C22×C4), (C2×C4).271(C22×D7), (C7×C22⋊C4).135C22, SmallGroup(448,974)

Series: Derived Chief Lower central Upper central

C1C14 — C427D14
C1C7C14C2×C14C22×D7C23×D7C22×D28 — C427D14
C7C14 — C427D14
C1C22C42⋊C2

Generators and relations for C427D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, ac=ca, dad=a-1, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1780 in 338 conjugacy classes, 151 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C42⋊C2, C42⋊C2, C4×D4, C22×D4, C4×D7, D28, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22.11C24, C4×Dic7, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C4×D7, C2×D28, C22×C28, C23×D7, C4×D28, D7×C22⋊C4, D28⋊C4, C23.21D14, C7×C42⋊C2, C22×D28, C427D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C24, D14, C23×C4, 2+ 1+4, C4×D7, C22×D7, C22.11C24, C2×C4×D7, C23×D7, D7×C22×C4, D48D14, C427D14

Smallest permutation representation of C427D14
On 112 points
Generators in S112
(1 35 56 9)(2 29 50 10)(3 30 51 11)(4 31 52 12)(5 32 53 13)(6 33 54 14)(7 34 55 8)(15 47 22 41)(16 48 23 42)(17 49 24 36)(18 43 25 37)(19 44 26 38)(20 45 27 39)(21 46 28 40)(57 108 64 101)(58 109 65 102)(59 110 66 103)(60 111 67 104)(61 112 68 105)(62 99 69 106)(63 100 70 107)(71 92 78 85)(72 93 79 86)(73 94 80 87)(74 95 81 88)(75 96 82 89)(76 97 83 90)(77 98 84 91)
(1 83 42 62)(2 77 36 70)(3 71 37 64)(4 79 38 58)(5 73 39 66)(6 81 40 60)(7 75 41 68)(8 89 22 112)(9 97 23 106)(10 91 24 100)(11 85 25 108)(12 93 26 102)(13 87 27 110)(14 95 28 104)(15 105 34 96)(16 99 35 90)(17 107 29 98)(18 101 30 92)(19 109 31 86)(20 103 32 94)(21 111 33 88)(43 57 51 78)(44 65 52 72)(45 59 53 80)(46 67 54 74)(47 61 55 82)(48 69 56 76)(49 63 50 84)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 54)(2 53)(3 52)(4 51)(5 50)(6 56)(7 55)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(29 32)(30 31)(33 35)(36 45)(37 44)(38 43)(39 49)(40 48)(41 47)(42 46)(57 65)(58 64)(59 63)(60 62)(66 70)(67 69)(71 79)(72 78)(73 77)(74 76)(80 84)(81 83)(85 86)(87 98)(88 97)(89 96)(90 95)(91 94)(92 93)(99 104)(100 103)(101 102)(105 112)(106 111)(107 110)(108 109)

G:=sub<Sym(112)| (1,35,56,9)(2,29,50,10)(3,30,51,11)(4,31,52,12)(5,32,53,13)(6,33,54,14)(7,34,55,8)(15,47,22,41)(16,48,23,42)(17,49,24,36)(18,43,25,37)(19,44,26,38)(20,45,27,39)(21,46,28,40)(57,108,64,101)(58,109,65,102)(59,110,66,103)(60,111,67,104)(61,112,68,105)(62,99,69,106)(63,100,70,107)(71,92,78,85)(72,93,79,86)(73,94,80,87)(74,95,81,88)(75,96,82,89)(76,97,83,90)(77,98,84,91), (1,83,42,62)(2,77,36,70)(3,71,37,64)(4,79,38,58)(5,73,39,66)(6,81,40,60)(7,75,41,68)(8,89,22,112)(9,97,23,106)(10,91,24,100)(11,85,25,108)(12,93,26,102)(13,87,27,110)(14,95,28,104)(15,105,34,96)(16,99,35,90)(17,107,29,98)(18,101,30,92)(19,109,31,86)(20,103,32,94)(21,111,33,88)(43,57,51,78)(44,65,52,72)(45,59,53,80)(46,67,54,74)(47,61,55,82)(48,69,56,76)(49,63,50,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,54)(2,53)(3,52)(4,51)(5,50)(6,56)(7,55)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,32)(30,31)(33,35)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,65)(58,64)(59,63)(60,62)(66,70)(67,69)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(85,86)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(99,104)(100,103)(101,102)(105,112)(106,111)(107,110)(108,109)>;

G:=Group( (1,35,56,9)(2,29,50,10)(3,30,51,11)(4,31,52,12)(5,32,53,13)(6,33,54,14)(7,34,55,8)(15,47,22,41)(16,48,23,42)(17,49,24,36)(18,43,25,37)(19,44,26,38)(20,45,27,39)(21,46,28,40)(57,108,64,101)(58,109,65,102)(59,110,66,103)(60,111,67,104)(61,112,68,105)(62,99,69,106)(63,100,70,107)(71,92,78,85)(72,93,79,86)(73,94,80,87)(74,95,81,88)(75,96,82,89)(76,97,83,90)(77,98,84,91), (1,83,42,62)(2,77,36,70)(3,71,37,64)(4,79,38,58)(5,73,39,66)(6,81,40,60)(7,75,41,68)(8,89,22,112)(9,97,23,106)(10,91,24,100)(11,85,25,108)(12,93,26,102)(13,87,27,110)(14,95,28,104)(15,105,34,96)(16,99,35,90)(17,107,29,98)(18,101,30,92)(19,109,31,86)(20,103,32,94)(21,111,33,88)(43,57,51,78)(44,65,52,72)(45,59,53,80)(46,67,54,74)(47,61,55,82)(48,69,56,76)(49,63,50,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,54)(2,53)(3,52)(4,51)(5,50)(6,56)(7,55)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,32)(30,31)(33,35)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,65)(58,64)(59,63)(60,62)(66,70)(67,69)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(85,86)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(99,104)(100,103)(101,102)(105,112)(106,111)(107,110)(108,109) );

G=PermutationGroup([[(1,35,56,9),(2,29,50,10),(3,30,51,11),(4,31,52,12),(5,32,53,13),(6,33,54,14),(7,34,55,8),(15,47,22,41),(16,48,23,42),(17,49,24,36),(18,43,25,37),(19,44,26,38),(20,45,27,39),(21,46,28,40),(57,108,64,101),(58,109,65,102),(59,110,66,103),(60,111,67,104),(61,112,68,105),(62,99,69,106),(63,100,70,107),(71,92,78,85),(72,93,79,86),(73,94,80,87),(74,95,81,88),(75,96,82,89),(76,97,83,90),(77,98,84,91)], [(1,83,42,62),(2,77,36,70),(3,71,37,64),(4,79,38,58),(5,73,39,66),(6,81,40,60),(7,75,41,68),(8,89,22,112),(9,97,23,106),(10,91,24,100),(11,85,25,108),(12,93,26,102),(13,87,27,110),(14,95,28,104),(15,105,34,96),(16,99,35,90),(17,107,29,98),(18,101,30,92),(19,109,31,86),(20,103,32,94),(21,111,33,88),(43,57,51,78),(44,65,52,72),(45,59,53,80),(46,67,54,74),(47,61,55,82),(48,69,56,76),(49,63,50,84)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,54),(2,53),(3,52),(4,51),(5,50),(6,56),(7,55),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(29,32),(30,31),(33,35),(36,45),(37,44),(38,43),(39,49),(40,48),(41,47),(42,46),(57,65),(58,64),(59,63),(60,62),(66,70),(67,69),(71,79),(72,78),(73,77),(74,76),(80,84),(81,83),(85,86),(87,98),(88,97),(89,96),(90,95),(91,94),(92,93),(99,104),(100,103),(101,102),(105,112),(106,111),(107,110),(108,109)]])

94 conjugacy classes

class 1 2A2B2C2D2E2F···2M4A···4L4M···4T7A7B7C14A···14I14J···14O28A···28L28M···28AP
order1222222···24···44···477714···1414···1428···2828···28
size11112214···142···214···142222···24···42···24···4

94 irreducible representations

dim1111111122222244
type++++++++++++++
imageC1C2C2C2C2C2C2C4D7D14D14D14D14C4×D72+ 1+4D48D14
kernelC427D14C4×D28D7×C22⋊C4D28⋊C4C23.21D14C7×C42⋊C2C22×D28C2×D28C42⋊C2C42C22⋊C4C4⋊C4C22×C4C2×C4C14C2
# reps1444111163666324212

Matrix representation of C427D14 in GL6(𝔽29)

100000
010000
00162400
0051300
00001624
0000513
,
1200000
0120000
00280270
00028027
000010
000001
,
0190000
3260000
00252500
0041100
004444
0025182518
,
26100000
530000
00252500
0011400
004444
0018251825

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,5,0,0,0,0,24,13,0,0,0,0,0,0,16,5,0,0,0,0,24,13],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,27,0,1,0,0,0,0,27,0,1],[0,3,0,0,0,0,19,26,0,0,0,0,0,0,25,4,4,25,0,0,25,11,4,18,0,0,0,0,4,25,0,0,0,0,4,18],[26,5,0,0,0,0,10,3,0,0,0,0,0,0,25,11,4,18,0,0,25,4,4,25,0,0,0,0,4,18,0,0,0,0,4,25] >;

C427D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_7D_{14}
% in TeX

G:=Group("C4^2:7D14");
// GroupNames label

G:=SmallGroup(448,974);
// by ID

G=gap.SmallGroup(448,974);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,184,570,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽